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Rayleigh-Taylor Instability (RTI)

Occurs when a dense fluid is supported by a lighter one

 The dense fluid falls through the lighter fluid in “spikes”

 The light fluid rises through the dense fluid in “bubbles”

Pumps energy into the system at small scales

 Particularly difficult to model
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Rayleigh-Taylor Instability Applications

• Natural convection in the oceans and atmosphere

• Heat transport in coolant in nuclear reactors

• Stellar remnants in supernova

• Fuel-ablator mix in inertial confinement fusion

– RTI transports carbon-laden ablator into the hydrogen fuel

– Carbon radiates energy away, lowering temperature

– Hydrogen fails to fuse (“ignite”)

The RTI is a priority research direction for the 

national ignition facility of the USA at LLNL
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Boussinesq single-mode RTI

Assume the fluids have nearly the same density

Assume the initial perturbation is small and sharp

Assume the fluids have the same viscosity

Restrict the initial condition to a single frequency

This makes the problem well-posed with two 

parameters:

 The Grashof number (Gr) compares the buoyant to 

viscous forces

 The Schmidt number (Sc) compares the diffusion of 

momentum and mass
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Boussinesq single-mode RTI and model fitting

Now the problem is a mapping from the Grashof and Schmidt number to the trajectory of 

the rising bubble:

𝐺𝑟, 𝑆𝑐 ⇒ 𝐻 𝑡

Typically, mapping is evaluated via simulation of Navier-Stokes

– 3D non-linear PDEs are hard to solve correctly

– Direct numerical simulations are expensive: millions of core-hours typically

Instead, we can try to approximate the dynamics with simpler buoyancy-drag models

– ODEs are much easier to solve numerically

 𝐻 =
𝐶0𝐴𝑔𝜆

2𝐻 + 𝐶1𝜆
2  𝐻2 + 𝐶2𝜆𝐻  𝐻

𝐶3𝜆
3 + 𝐶4𝜆

2𝐻

The ODE approximate has undetermined parameters: the C’s

– Let’s fit them! -> Our approach

– “Nonlinear supervised learning”
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Generating the data set

We want to cover the two-dimensional (Gr, Sc) input space

We are interested specifically in the error in the trajectory H(t)

We have an error scale based on the quality of the ODE

 If the training data is much more accurate than the ODE, it is overkill

What is the most efficient discretization for generating this data?

 Which discretization that satisfies our accuracy requirement consumes the 

fewest cycles?
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Several Variables at the End of the Simulation



NekBox is a stripped-down of Nek5000 for box-shaped domains

NekBox solves the incompressible Navier-Stokes equations:

Incl. advection-diffusion equations for scalar variables such as temperature or 

mass fractions.

Nek uses the spectral element method (SEM):

• A tensor product of Gauss-Lobatto-Legendre (GLL) quadrature points 

within each element -> N^3 DOFs per element

• Continuity across elements -> forming a mesh (using direct stiffness 

summation)

Operators are written as element local operators:

which reduces the complexity from O(N^6) to O(N^4).
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NekBox



Spectral Element Method (SEM)

Spatial discretization with two levels:

 Unstructured mesh of elements coupled by continuity at faces, edges 

– only nearest neighbours communication with depth 1, independent of 

the polynomial order

 Tensor product of Gauss-Lobatto-Legendre points within each element

– small dense matrix multiplication (DGEMM) is the key kernel with Inner 

dimension (k) being the 1D size, not the 3D size, e.g. 4, 8, 16, 32

The mesh is good at matching geometry and boundary conditions

 Polynomial convergence w.r.t. mesh refinement

The GLL points are highly accurate

 Exponential convergence w.r.t. polynomial order
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key ingredients for 

scalable and 

efficient code!



A typical NekBox run spends <1% in sparse computations & communications, 

~40% in vector-vector or matrix-vector operations, ~60% matrix-matrix 

operations.

Helmholtz operator:

Basis transformation:

Gradient calculation:
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NekBox’s main compute routines

 Batched GEMM is not beneficial as it 

would mean loosing locality



Interface (C/C++ and FORTRAN API)

Simplified interface for matrix-matrix multiplications

• cm x n = cm x n + am x k * bk x n (also full xGEMM)

Highly optimized assembly code generation (inline, *.s, JIT byte-code)

• SSE3, AVX, AVX2, IMCI, and AVX-512

• AVX-512 code quality

• Maximizes number of immediate operands

• Limits instruction width to 16 Byte/cycle

High level code optimizations

• Implicitly aligned leading dimension (LDC) – allows aligned store instr.

• Aligned load instructions 

• Sophisticated data prefetch

License

• Open Source Software (BSD 3-clause license)*, https://github.com/hfp/libxsmm
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LIBXSMM: Implementation



• NekBox performs vector stores that overwrite memory on necessarily unaligned 

data

• Regular unaligned stores would issue RFOs (read for ownership), which consume 

read BW

• Aligned non-temporal stores via peeling allow us to override the data without 

RFOs, increasing “useful” bandwidth
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Element Updates with non-temporal Stores



• Mira is a IBM BlueGene/Q with 49,152 nodes hosted at ANL in the US. Each 

node has 16 cores with 4 hardware threads per core and can support 204.8 

GFLOPS and 30 GiB/s main memory bandwidth. (FLOP/BYTES ~ 6)

• Shaheen is a Cray XC40 with 6144 nodes hosted at KAUST in Saudi Arabia. 

Each node has two Intel® Xeon® E5-2698v3 (code-named Haswell) 

processors with 16 cores each and can support around 1177.6 GFLOPS and 

101.6 GiB/s main memory bandwidth, combined on both NUMA domains. 

(FLOPS/BYTE ~10)

 Shaheen’s cores therefore have 2.9× the floating point and 1.7× the memory 

bandwidth of Mira’s BlueGene/Q cores.
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Systems we used in this Study
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Helmholtz Op. and Basis Transf. on Shaheen

Performance of reproducers for the Helmholtz operator (top) and Basis Transformation 

(bottom) using different implementation for the  small matrix multiplications. NTS denotes 

the usage of non-temporal stores. Measured on Shaheen (32 cores of HSW-EP, 2.3 GHz)
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Helmholtz-Operator on Mira (BG/Q) vs. Shaheen

Performance of reproducer for the Helmholtz operator reproducer on Mira (top)  and 

Shaheen (bottom). IBM Blue Gene/Q doesn’t offer unaligned memory support for vector 

instructions and Intel Xeon benefits from more flexible hardware and its optimal utilization 

through LIBXSMM. mxm_bgq is an assembly library for Mira.



• Plot (a) confirms that all executions on Shaheen (circles) are bandwidth bound 

and Mira (crosses) is getting compute bound for higher orders 

• This is due to the Xeon’s stronger core + LIBXSMM which results into a 

significant speed-up wrt. time-to-solution as shown in Figure (b)
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Identifying the optimal spectral order: Performance

+/- 20%

+/- 65%
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Identifying the optimal spectral order: Accuracy

Log-base 2 error of bubble height and mix volume on Shaheen and Mira, 

wrt. to time to solution. 

We can see that high orders are favorable as they better match modern hardware and have

superior convergence speed as they stay memory bandwidth bound for high orders.
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Performance at Petascale (Shaheen at KAUST)
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Xeon Phi 7250 (Knights Landing) results
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• We showcase two keys for achieving on-node performance with Petascale

Intel architectures:

• Runtime code generation to accelerate the small GEMMs needed in SEM

• Non-temporal stores to free memory bandwidth from RFOs

• Even with modern and powerful nodes, the Spectral Element Method is a 

good fit for large scale computing as it offers excellent weak and strong 

scaling properties

• These technologies allow us to push the efficiency frontier of SEM to very high 

orders where exponential convergence reduces computational cost

• Compared to Mira, Shaheen is up to 6x faster, outperforming the 2.9x 

difference in compute and 1.7x in bandwidth

• Due to more efficient instructions and deep out-of-order execution with 

LIBXSMM on Intel architectures
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Conclusion




